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Abstract
A simple moment method is used to treat some low-lying states of the hydrogen
atom. Accurate results are obtained for the Stark effect, the Zeeman effect and
for the energy shifts due to several mixed perturbations.

PACS numbers: 03.65.Ge, 32.60.+i

1. Introduction

The present work describes a simple moment calculation which can deal with both resonant
states and bound states produced by electric and magnetic fields for some low-lying states of
the hydrogen atom. Most of the traditional literature applies methods specifically designed for
either the Stark or the Zeeman effect, while the method of the present work is a multi-purpose
one. The most detailed developments and applications of moment techniques in the literature
are those due to C R Handy and his collaborators. To deal with systems which can yield
complex eigenvalues they applied a moment approach to a special equation involving the
squared modulus of the wavefunction [1, 2]. They also treated the ground state hydrogen atom
Zeeman effect by a moment method, after making a transformation to parabolic coordinates [3].
In matrix approaches to the Stark effect probably the best trailed idea is that of complex scaling,
which was applied in a series of similar papers long ago [4–6]. One of the clearest reviews
of the matrix approach to resonances is that of Moiseyev [7], in which it was proposed that a
complex form of the hypervirial relations should be valid even for resonant state wavefunctions.
In recent years this idea has been followed up in detail and hypervirial perturbation theory
has been given a complex extension which yields accurate complex resonant state energies for
several model systems previously treated by more complicated methods [8]. The Hill-series
method has also been found to be capable of complex extension to give resonant state energies
for some systems [9]. These latter two techniques have the special feature that they involve no
direct use of a wavefunction. It thus appears that the earlier methods involving wavefunctions
and complex matrix diagonalizations are part of a more general scheme which can be described
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as follows. We start with a technique which works for bound state problems but which contains
a nonlinear parameter (e.g. an effective nuclear charge or an effective oscillator frequency).
We then give a complex value to that parameter and use complex arithmetic in the calculations.
This yields complex energies which refer to the resonant states of the system. The aim of
the present work is to demonstrate that yet another traditional method, the simple method
of moments, also conforms to this pattern and so can give resonant states when an effective
nuclear charge is given complex values. The usual moment approach which has been applied
to the Stark or Zeeman effect is to pass through the moment equations (without using them
directly) in order to construct a perturbation theory [10–12]. We believe that the present work
is the first one to attempt a direct multi-purpose numerical application of the most simple
spherical polar moment equations to the Stark, Zeeman and other effects for the hydrogen
atom. The numerical results obtained are of high accuracy and in most cases are as good as
those obtained by previous works dedicated to a specific effect. Section 2 presents the basic
moment recurrence relation. Section 3 explains the efficient calculational use of the relation.
Sections 4 and 5 present numerical calculations for the Stark and Zeeman effects. Section 6
treats a variety of unusual potentials and section 7 gives a brief discussion and conclusion.

2. The basic moment secular equation

We study the Schrodinger equation (in atomic units)

H� =
[
−1

2
∇2 − Zo

r
+ V

]
� = E� (1)

where the perturbing potential is of the form

V =
∑
J,K

V (J,K)rJ µK (2)

with µ = cos(θ). The indices J and K run from 0 to 2, which allows for most of the traditional
perturbations usually studied for the hydrogen atom. To simplify the analysis we use reference
functions �(N,M) of the form

�(N,M) = exp(−Zr)(x + iy)LrNµM (3)

where Z is an adjustable parameter. The factor (x+iy)L is a harmonic function. This simplifies
the use of the kinetic energy operator. To apply the standard moment approach we evaluate
the terms in the equation

〈�(N,M)|H |�〉 = 〈�|H |�(N,M)〉 = E〈�(N,M)|�〉 (4)

Evaluating the second and third terms in (4), with A(N,M) = 〈�(N,M)|�〉, gives the
recurrence relation

C(N − 1,M)A(N − 1,M) + C(N − 2,M)A(N − 2,M)

+ C(N − 2,M − 2)A(N − 2,M − 2) +
∑
J,K

V (J,K)A(N + J,M + K)

= [E + Z2/2]A(N,M) (5)

where

C(N − 1,M) = Z(N + 1 + L) − Z0

C(N − 2,M) = 1
2 [M(M + 1 + 2L) − N(N + 1 + 2L)]

C(N − 2,M − 2) = − 1
2M(M − 1).

The standard approach in the literature would next expand the A(N,M) and the energy
as power series in one (or more rarely two) of the perturbation parameters so as to produce
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recurrence relations which would eventually lead to the construction of a single (or double)
perturbation series for the energy E. This approach necessarily requires the use of arrays with
three or more indices, involving increased computer memory space. This increased memory
requirement will often limit the order of perturbation theory which can be attained and thus
limit the accuracy of the numerical results, even when some summability technique is used to
treat the perturbation series for E (which will often turn out to be divergent). In the present
work we treat the moment equation (5) directly as a secular equation. This requires much less
memory space and makes possible an iterative solution process which gives more accurate
results than the perturbation form of the calculation.

In the present work we treat five non-degenerate states which have a single �(N,M) as
their unperturbed wavefunction and for which the perturbed wavefunction can be expressed as
a linear combination of the �(N,M). Since the unperturbed wavefunctions all have equal M
and N indices we can use the label (L,M0) for the unperturbed states. The five states studied
are 1s0(0, 0), 2p0(0, 1), 2p1(1, 0), 3d1(1, 1) and 3d2(2, 0).

3. The general method of calculation

To treat the state (L,M0) we set A(M0,M0) = 1 and keep this value fixed throughout the
calculation. The L value is then used in evaluating the coefficients in the recurrence relation
(5). The value of Z has to be adjusted empirically to obtain the best results; the details depend
on the potential V and so are treated case by case in later sections of the discussion. As
presented above, equation (5) is in typical matrix eigenvalue form, with the unknown energy
on the right. To carry out the major part of the iterative process we rewrite equation (5) so
as to express A(N − 1,M) in terms of all the other quantities. To initiate the iterations we
set E at the unperturbed energy for the appropriate state, which is (−1/2n2) for the case of
principal quantum number n. The values of a sequence of A(N − 1,M) are then calculated
by scanning the indices as follows: M goes from M0 to some maximum value MU; at a given
M the index N varies from M up to a maximum value NU, except that for M = M0 the index
N varies from M0 + 2 to NU. (The case M = M0, N = M0 + 1 obviously has to be avoided,
since it would change the fixed value A(M0,M0) = 1.) Here the assigned integers MU and
NU (M upper and N upper) are the upper limits which are essentially determining how many
radial and angular terms are being allowed to contribute to the wavefunction. At each point
of the scan over the indices we will have the existing A(N − 1,M) value and the newly
calculated value AC(N − 1,M). To aid convergence of the iterative process we found it
useful to introduce a relaxation parameter RA, such that the new A(N − 1,M) value is taken
to be A(N − 1,M) + RA[AC(N − 1,M) − A(N − 1,M)]. Inspection of equation (5) shows
that to evaluate E (on the right) we need A(M0 − 1,M0), which has been specifically omitted
from our scan, since it would correspond to the case M = N = M0. To find A(M0 − 1,M0)

we use another rewriting of equation (5) in which the A(N − 2,M) term is expressed in
terms of all the other quantities. We can then set M = M0, N = M0 + 1 in this equation to
yield a result for A(M0 − 1,M0). Returning to the original form of equation (5) we can now
set M = N = M0 to obtain a new computed energy value EC. We again use a relaxation
parameter, denoted by RE, taking the revised energy value to be E + RE[EC − E]. We note
that both RA and RE can be kept real, even for the case of the complex energies which occur
in Stark effect calculations.

Since it is our intention to make the algorithm sufficiently clear for readers to be able to
use it, we supplement the algebraic description given above by a more program-based version.
We represent equation (5) term by term in the schematic form T 1 + T 2 + T 3 + T V = T E,
supposing that a subroutine has been written which works out the five required terms when
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the main program sends the values of M and N. (We note that one of the five is redundant at
each call but this can be ignored to simplify the subroutine program.) The three stages of the
calculation can then be described as follows (with := here denoting an assignment statement).

(i) The A(N − 1,M) calculations (index range as described previously)

R := (T E − T 2 − T 3 − T V )/C(N − 1,M)
(6)

A(N − 1,M) := RA × R + (1 − RA) × A(N − 1,M)

(For each M, the scan over N is halted as soon as a zero R value is found.)
(ii) The A(M0 − 1,M0) calculation. [N = M0 + 1,M = M0]

R := (T E − T 1 − T 3 − T V )/C(N − 2,M)
(7)

A(M0 − 1,M0) := RA × R + (1 − RA) × A(M0 − 1,M0).

(iii) The energy calculation [N = M = M0]

EC := T 1 + T 2 + T 3 + T V − Z2/2
(8)

E := RE × EC + (1 − RE) × E.

For the Stark effect calculation, of course, the quantities are complex numbers, with a real
and an imaginary part, and so complex arithmetic must be used.

Computational trials showed that the procedure described above, in which the calculation
of the single term A(M0 − 1,M0) is isolated from that of the other A(N − 1,M) values, leads
to an effective iterative process in which E gradually moves away from the initial unperturbed
value towards the required perturbed energy. We found that the calculation of the revised E
value could be done between each scan of the indices M and N, without repeating the scan
in an attempt to fill up all the A(N − 1,M) before evaluating the revised E. Thus the initial
value A(M0,M0) slowly propagates outwards through the network of A(N,M) values. The
sequence of E values produced by this method converges to the perturbed energy directly for
sufficiently weak fields. For stronger fields it typically converges to four or more digits, but
leads to a sequence with favourable properties for the use of summation techniques. We have
used the simple Wynn epsilon algorithm to treat the sequence of E values. For the Stark effect
problem, of course, a complex variable form of that algorithm is required; however such a
form had already been developed in the previous calculations involving complex hypervirial
perturbation theory [8].

In principle the upper limits MU and NU should be gradually increased in order to check
for convergence as a function of the basis size. However, it is more simple to find values of
MU and NU which are so large that they suffice for all the cases treated. Using such a large
dimension also means that the choice of Z becomes less critical.

4. The stark effect calculation

To treat the case of an electric field along the z direction we set V (1, 1) = λ. We treat the
three states 1s0, 2p1 and 3d2, which are not coupled to any other initially degenerate states by
the electric field. The value of M0 is thus 0 for all three states and L is 0,1 or 2. The value
of Z is complex, Z = ZR + iZI , since we are calculating complex perturbed energies. For
small λ values ZR will be close to the value 1/n for a state of principal quantum number n.
The values found empirically are given in the tables of results. We found that the fixed choice
RA = 0.4, RE = 0.2, NU = 90, MU = 50 was suitable for all the calculations, allowing
around 200 iterations to be performed.
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Table 1. Stark effect energies for L = 0.

λ ZR, ZI ER (1s0) EI (1s0)

0.002 1.0, 0.02 −0.500 009 000 889 0643
0.004 1.0, 0.04 −0.500 036 014 240 1545
0.006 1.0, 0.06 −0.500 081 072 219 0729
0.008 1.0, 0.08 −0.500 144 228 820 0816
0.010 1.0, 0.10 −0.500 225 560 457 960
0.020 1.0, 0.20 −0.500 909 224 259 293 2.775(−13)
0.030 1.1, 0.40 −0.502 074 272 607 09 1.118 764(−8)
0.040 1.2, 0.40 −0.503 771 591 013 65 1.946 3500(−6)
0.050 1.2, 0.50 −0.506 105 425 362 64 3.859 2083(−5)
0.060 1.2, 0.60 −0.509 203 450 8788 2.575 3875(−4)
0.070 1.3, 0.70 −0.513 076 765 822 9.236 8428(−4)
0.080 1.3, 0.80 −0.517 560 617 006 2.269 8288(−3)
0.090 1.4, 0.80 −0.522 412 807 15 4.391 9872(−3)
0.100 1.5, 0.80 −0.527 418 175 10 7.269 0568(−3)
0.120 1.5, 0.80 −0.537 335 5171 1.495 7925(−2)
0.140 1.5, 0.80 −0.546 676 9462 2.462 9235(−2)
0.160 1.5, 0.80 −0.555 254 3480 3.570 8138(−2)
0.180 1.5, 0.80 −0.563 054 517 4.779 442 29(−2)
0.200 1.5, 0.80 −0.570 124 900 6.061 4546(−2)
0.300 1.7, 0.90 −0.596 722 78 1.306 6557(−1)

In producing the tables of results we proceeded by performing each calculation for
gradually increasing field strengths and only went up to field strengths for which at least nine
decimal digits of accuracy were obtainable using the fixed set of parameters which we have
stated above. For low field strengths (for example for λ < 0.05 for the 1s state) the iterative
process converges directly to the complex energy if the complex Z is appropriately adjusted.
For larger values of λ the iterated E values converge to between nine and four digits and further
digits are obtained by applying a complex variable version of the Wynn epsilon algorithm to
the sequences of E values.

Our results for the complex Stark energies of three states are given in tables 1–3. The
tables given in [19] set out the results for the L = 0 and L = 1 cases as obtained by many
previous workers using a variety of techniques. The best results for the L = 0 case are those
of [28] and the best results for the L = 1 case are those of [29]. Our results for these two
cases are as good as or better than those of [28] and [29] for those values of λ which we have
included in our tables. For λ values below 0.01 our results for the L = 0 case are in agreement
with the very accurate ones given in [14]; for such weak fields neither our method nor that
of [14] was able to yield a stable result for the very small imaginary part of the complex
eigenvalue. For the L = 2 case we could not locate any previous results in the literature and
so our results for L = 2 are presumably new.

To check the complex energies obtained in our calculations we tested for stability against
small variations in the complex Z value and in the two upper limits NU and MU. The stability
was usually better than that obtained by previous workers who checked by using perturbation
series expansions about two different points [5].

5. The zeeman effect calculation

To represent the perturbation V = (γ 2/8)(x2 + y2) we set V (2, 0) = −V (2, 2) = γ 2/8.
Such a perturbation links only �(N,M) which differ by 2 in their M value. We relabel the
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Table 2. Stark effect energies for L = 1.

λ ZR, ZI ER (2p1) EI (2p1)

0.001 0.50, 0.10 −0.125 078 224 037 103
0.002 0.50, 0.10 −0.125 315 691 665 497 2.15(−15)
0.003 0.50, 0.20 −0.125 721 746 6701 8.5938(−10)
0.004 0.50, 0.20 −0.126 316 885 4266 4.049 803(−7)
0.005 0.50, 0.20 −0.127 146 612 703 96 1.307 642 72(−5)
0.006 0.50, 0.20 −0.128 271 493 390 1.090 158 42(−4)
0.007 0.55, 0.25 −0.129 679 053 085 4.208 320 66(−4)
0.008 0.55, 0.25 −0.131 261 459 924 1.036 240 53(−3)
0.009 0.55, 0.25 −0.132 902 207 63 1.956 357 94(−3)
0.010 0.55, 0.25 −0.134 524 488 77 3.138 6539(−3)
0.012 0.55, 0.25 −0.137 578 1092 6.098 482(−3)
0.014 0.60, 0.30 −0.140 308 5571 9.607 915(−3)
0.016 0.65, 0.35 −0.142 721 5694 1.347 4643(−2)
0.018 0.65, 0.35 −0.144 849 9837 1.758 1311(−2)
0.020 0.65, 0.35 −0.146 729 380 2.185 364(−2)
0.030 0.75, 0.35 −0.153 356 64 4.442 363(−2)

Table 3. Stark effect energies for L = 2.

λ ZR, ZI ER (3d2) EI (3d2)

0.001 0.33, 0.07 −0.056 287 315 349 1.706 757(−7)
0.002 0.35, 0.15 −0.059 065 562 39 7.223 2324(−4)
0.003 0.40, 0.20 −0.062 230 359 16 3.724 6754(−3)
0.004 0.45, 0.25 −0.064 633 8235 7.754 7563(−3)
0.005 0.45, 0.25 −0.066 434 4077 1.218 652 02(−2)
0.006 0.50, 0.25 −0.067 796 251 1.679 6022(−2)
0.007 0.55, 0.25 −0.068 829 286 2.148 5008(−2)
0.008 0.55, 0.25 −0.069 607 55 2.620 426(−2)
0.009 0.60, 0.30 −0.070 182 75 3.092 703(−2)
0.010 0.60, 0.30 −0.070 592 38 3.563 796(−2)

A(N,M) so that every index M is used (rather than half of them). The change is accomplished
very easily, as follows. The scanning rules are retained in the same form as that described in
section 3. However, M is scanned in steps of 2, starting from M = M0. When the subroutine
generating the terms T 1 to T E is called, the indices M,M ±2 in the state indices are replaced
by MI and MI ± 1, with MI = (M0 + M)/2. Otherwise the calculation proceeds in the
standard manner explained in section 3 (using RA = RE = 1/2,MU = NU = 100). The
value of Z is real and the calculation was found to yield very accurate Zeeman energies. As Z
is gradually increased (for a given γ ) the number of converged digits in E also increases, until
at and beyond a critical Z value the energy converges to full double precision. The iterations
are simply continued until all digits are stable; more than a thousand iterations might be
needed. Tables 4–6 show results for five states, with two more digits than are available in the
copious 12 digit comparison results given in [21]. The energy values in our tables refer to the
Hamiltonian in equation (1) and so omit the linear Zeeman term and also the spin contribution.
We note that we used only standard double precision. For the case γ = 1 for the 1s0 state the
method of [21] required the use of quadruple precision.

Results with more than three or four accurate digits are necessarily incomplete from a
physical point of view, since they do not allow for several small terms in the full Hamiltonian
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Table 4. Zeeman effect energies for L = 0. (Z = 1 + 3γ + γ 2/2)

γ E(1so)

0.05 −0.499 376 706 706 14
0.10 −0.497 526 480 401 09
0.15 −0.494 502 945 778 82
0.20 −0.490 381 565 034 76
0.25 −0.485 247 435 259 98
0.30 −0.479 186 552 901 50
0.35 −0.472 280 764 956 07
0.40 −0.464 605 379 868 22
0.45 −0.456 228 386 357 98
0.50 −0.447 210 538 458 07
0.60 −0.427 462 287 757 19
0.70 −0.405 724 068 429 61
0.80 −0.382 283 393 769 46
0.90 −0.357 369 839 402 28
1.00 −0.331 168 896 733 15

Table 5. Zeeman effect energies for L = 1. (Z = 0.5 + 8γ )

γ E (2p1) E (2p0)

0.01 −0.124 701 144 177 38 −0.124 850 415 832 55
0.02 −0.123 817 610 347 53 −0.124 406 465 980 88
0.03 −0.122 384 114 684 73 −0.123 681 330 847 76
0.04 −0.120 447 535 409 29 −0.122 693 709 739 63
0.05 −0.118 058 188 453 78 −0.121 464 837 782 07
0.06 −0.115 264 418 759 56 −0.120 016 268 440 71
0.07 −0.112 110 099 393 19 −0.118 368 549 012 10
0.08 −0.108 633 896 258 71 −0.116 540 574 358 37
0.09 −0.104 869 409 125 06 −0.114 549 364 846 70
0.10 −0.100 845 672 373 34 −0.112 410 078 398 63
0.12 −0.092 117 346 403 71 −0.107 739 398 212 67
0.14 −0.082 611 944 676 57 −0.102 618 226 335 67
0.16 −0.072 453 300 012 51 −0.097 116 798 003 62
0.18 −0.061 737 197 914 85 −0.091 290 610 318 11
0.20 −0.050 539 101 715 10 −0.085 184 041 068 19

Table 6. Zeeman effect energies for L = 2. (Z = 0.33 + 12γ )

γ E (3d2) E (3d1)

0.01 −0.054 271 834 028 09 −0.054 678 149 523 27
0.02 −0.050 685 874 396 10 −0.052 253 547 538 39
0.03 −0.045 490 563 101 96 −0.048 661 978 337 93
0.04 −0.039 124 530 270 64 −0.044 213 203 232 78
0.05 −0.031 888 753 731 50 −0.039 120 137 635 24
0.06 −0.023 981 234 765 39 −0.033 527 503 781 57
0.07 −0.015 537 608 899 08 −0.027 536 314 143 57
0.08 −0.006 654 630 636 69 −0.021 219 398 776 46

which could contribute to the energy. The vast majority of published Zeeman effect energies
share this defect. However, the large number of digits obtained in our calculation does have a
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Table 7. L = 0 resonance energies for V = −λrP with ZR = 1 + (P − 1)/2.

λ P ZI ER (1s0) EI (1s0)

0.02 1 0.3 −0.530 663 983 531 828 2.7815(−12)
0.04 1 0.5 −0.563 067 242 935 423 9.607 327 00(−6)
0.06 1 0.7 −0.598 479 496 219 583 7.974 049 95(−4)
0.08 1 0.9 −0.636 534 339 528 426 5.085 202 51(−3)
0.10 1 1.0 −0.674 574 135 731 900 1.346 928 83(−2)
0.02 2 1.0 −0.571 711 825 725 305 1.691 488 42(−2)
0.04 2 1.0 −0.626 370 617 413 66 5.897 703 24(−2)
0.06 2 1.5 −0.666 112 984 513 90 1.018 691 80(−1)
0.08 2 1.5 −0.697 796 457 924 84 1.427 210 741(−1)
0.10 2 1.5 −0.724 423 333 443 45 1.813 923 003(−1)

benefit, since it means that some expectation values can be found to high accuracy by energy
differencing. If a very small term such as αU , (with U = r−1, r2 or z2) is added to the
potential then the energy shift produced is α〈U 〉, where 〈U 〉 is the expectation value of U for
the perturbed state being treated. Thus, for example, at γ = 0.3 we find (for the 1s0 state)
〈r−1〉 = 1.036 331, 〈r2〉 = 2.669 788, 〈x2〉 = 〈y2〉 = 0.866 197, 〈z2〉 = 0.937 393. These
expectation values differ noticeably from their zero field values and show how the spherically
symmetric part of the potential contracts the wavefunction while the rest of the potential gives
an anisotropic effect which gives a relative stretching of the wavefunction along the z axis.
For small γ values it is easy to check that the energy obtained by using the effective radial
potential (γ 2/12)r2 gives a very good approximation to the ground-state Zeeman energy, as
pointed out long ago [22, 23] (despite the claim made in [24]). The accurate results obtainable
by the method of this paper allowed us to extend the earlier radial approximation; a sequence
of numerical calculations showed that for the 1s0 ground state the Zeeman energy can be
obtained with even greater accuracy by adding the term

DE = 0.052 084γ 4

1 + 7.89γ 2
(9)

to the energy obtained using the effective radial potential (which can be found by the present
technique).

For example, at γ = 0.12 the effective radial potential becomes 0.0012r2 and gives the
energy −0.496 444 27 to 8 digits. The correction term of equation (8) when added to this
result gives the corrected energy −0.496 453 97, while the accurate method of this paper gives
−0.496 453 98.

6. Some other perturbations

Although section 5 has described a particularly efficient method of labelling to treat the
Zeeman effect, it is, of course, possible to use the original calculation for the Zeeman effect
(at the expense of having only half as many µM terms available to describe the perturbed
wavefunction). To show the flexibility of the simple moment method we have applied it to a
range of potentials; we give illustrative results for the 1s0 ground state. To treat the complex
resonance energies for a perturbation −λr or −λr2 we can keep M fixed at the value 0 (because
of the radial symmetry) and so only scan the index N. Table 7 shows some typical results, which
are more accurate than those given in [8]. The static Van der Waals potential for a hydrogen
atom at a distance of d atomic units from a planar metal surface is equal to −(1/d3)(r2 + z2)
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Table 8. L = 0 state energies for V = −λ(r2 + z2).

λ ZR, ZI ER (1s0) EI (1s0)

0.002 1.2, 0.5 −0.508 283 888 078 1.518250(−6)
0.004 1.2, 1.0 −0.517 393 189 32 1.631 6893(−4)
0.006 1.2, 1.0 −0.527 391 459 634 1.130 458 64(−3)
0.008 1.2, 1.0 −0.537 717 942 614 3.301 227 99(−3)
0.010 1.2, 1.0 −0.547 851 906 60 6.558 9336(−3)

Table 9. L = 0 energies for V = µr + λz, with Z = (1.2, 0.5).

µ λ ER (1s0) EI (1s0)

0.002 0.035 −0.499 795 7840 7.8221(−8)
0.004 0.050 −0.499 829 8391 1.482 509(−5)
0.006 0.061 −0.499 880 6088 1.192 057(−4)
0.008 0.070 −0.499 910 7312 3.780 262(−4)
0.010 0.078 −0.499 970 7497 8.160 804(−4)
0.012 0.085 −0.499 870 0753 1.382 919(−3)
0.014 0.092 −0.499 967 6374 2.157 087(−3)
0.016 0.098 −0.499 703 3260 2.942 328(−3)

Table 10. Stark–Zeeman energies for L = 0.

λ γ ZR, ZI ER (1s0) EI (1s0)

0.04 0.05 1.15, 0.4 −0.503 124 025 26 1.573 22(−6)
0.04 0.10 1.30, 0.4 −0.501 206 356 21 9.9573(−7)
0.04 0.15 1.45, 0.4 −0.498 084 3720 4.160(−7)
0.06 0.05 1.15, 0.6 −0.508 510 427 450 2.366 378 73(−4)
0.06 0.10 1.30, 0.6 −0.506 463 502 73 1.857 2985(−4)
0.06 0.15 1.45, 0.6 −0.503 150 111 1.286 17(−4)
0.08 0.05 1.15, 0.5 −0.516 837 605 09 2.179 3726(−3)
0.08 0.10 1.30, 0.5 −0.514 690 9310 1.933 588(−3)
0.08 0.15 1.45, 0.6 −0.511 190 280 1.597 430(−3)
0.10 0.05 1.30, 0.7 −0.526 711 107 35 7.104 987 26(−3)
0.10 0.10 1.50, 0.7 −0.524 599 5627 6.639 1709(−3)
0.10 0.15 1.70, 0.7 −0.521 118 225 5.945 230(−3)

[25, 26], in the lowest order of approximation in which the atom is far from the surface. Here
d is the distance of the nucleus from the surface and r and z are the electronic coordinates with
respect to the nucleus. If we take d = 5 as a plausible lower limit for the relevant range of d
values then we should regard the negative coefficient of the potential as going up to a value of
around 0.01. Table 8 shows some typical results for the 1s0 ground state, with λ = 1/d3. The
first-order energy would be −0.5 − λ〈r2 + z2〉 = −0.5 − 4λ. The simple method of this paper
shows that the lowest order approximation actually leads to a complex energy, albeit with a
small imaginary part. Table 9 gives results for a calculation in which both radial and full
Stark effects are present, with an attempt being made to produce an approximate cancellation
between the opposite energy shifts produced by the two perturbations. Table 10 gives some
specimen results for the Stark–Zeeman effect with both the electric and magnetic fields along
the z direction.
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Results were also obtained for the resonances due to the perturbing potential −λz2 and for
the Zeeman effect with an imaginary field strength. However we regard the results shown in
the tables as being sufficiently plentiful to indicate the wide applicability of the calculational
method reported here, since the method is simple enough to be applied directly by readers
who are interested in such problems.

7. Conclusion

The specimen results presented here demonstrate that even the most simple moment relation in
spherical polar coordinates is capable of producing accurate results for the perturbed hydrogen
atom and so provides a further illustration of the complexification procedure which is described
in the introduction. We wish to point out how the method might be improved and extended
to deal with some special cases. By applying the usual perturbative expansion to the moment
recurrence relation, following the route which has been followed by previous work [10–12]
we arrive at the perturbative form of the method described here. However, we can now
produce a dual calculation, with the direct method described in the present work giving a
calibratory control over the perturbative results which arise from the same equations. Such a
dual calculation has now been carried out for the Zeeman effect and the details will be reported
in a work which is currently in preparation. Were such a dual approach to be carried out for
the Stark effect then it would lead directly to a complex series, whereas the previous tradition
has been to use analytic continuation or other techniques to extract the imaginary part of the
energy from the conventional real perturbative series for the energy [5, 27, 28].

We emphasize that the principal aim of the present work is to make the simple method
described here available to other workers. An appropriate computer program can be written by
any reader in a few hours, since iterative use of just a few equations is all that is required. The
tables of numerical results were given in order to demonstrate that the effort of adopting the
method would be worthwhile. As is usual for a new technique, we have tested the method on
a family of non-degenerate states, for which the simple initial condition A(M0,M0) = 1 will
suffice. When it comes to the Stark effect for the 2p0 state, however, two or more A(M,N)

will need to be fixed, with a ratio which will have to be determined to pick out one of the
two partner states which arise from the coupling of that state with the 2s0 state. This problem
also arises in the perturbation theoretic version of the theory and has been given an elegant
solution by Fernandez [10]; accordingly, we conjecture that a similar approach will provide a
solution to the same problem of degeneracy in our direct secular equation use of the moment
equations.

The algorithm of the present work has been presented in this context of moment theory,
since that is the form previously adopted by workers who have taken an approach based
on perturbation theory. It thus facilitates the kind of dual purpose (iterative/perturbative)
calculations mentioned previously. However, as noted in section 2, we have used a set of basis
functions which are essentially complete for the problems being considered. Our approach
can thus be regarded as equivalent to a type of Hill determinant approach in two dimensions,
which would make it a more complicated version of the Hill-series approach already used
for resonances in one dimension [9]. The complexification approach proceeds by taking
initial formulae which work for bound states (and thus involve real wavefunctions) and then
giving complex values to either a nuclear charge or an oscillator frequency, while retaining
the original form of the equations for the bound state theory. This approach sidesteps the
explicit task of studying the modified form of inner product which is implicit in the formation
of matrix elements for the study of resonance states, although previous work indicates that it
is appropriate to suppress the usual complex conjugation operation on one term when making
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an explicit matrix calculation for such states [7]. In terms of matrix iterative methods our
calculation is essentially a modified Gauss–Seidel approach to finding the lowest eigenvalue
of a very large matrix in which each element is complex and is also specified by two indices.
The explicit algebraic expressions for the matrix elements make it possible to perform the task
without the actual construction of the enormous matrix which is implicit in the calculation.
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